E-book: GEOTECHNICAL ENGINEERING INVESTIGATION HANDBOOK
GEOTECHNICAL ENGINEERING INVESTIGATION HANDBOOK
Second Edition
Roy E. Hunt
Geotechnical engineering is a branch of civil engineering that concerns the study of the interrelationship between the geologic environment and the work done by human kind. Soil mechanics and rock mechanics are fields in which the mathematical aspects of analysisfor the design of engineering works are defined and described as they relate to the geologic environment. Projects involving excavations in rock bear a close relationship to mining engineering. The basis on which the knowledge structure of geotechnical engineeringis built is a thorough comprehension of the elements of the geologic environment.
In reality, therefore, geotechnical engineering consists of two major, but separate, disciplines: geology and civil engineering. Both disciplines are branches of applied science, but there is a major philosophical difference between them. The geologist bases his conclusions primarily on observations and intuitive reasoning, whereas the engineer measures properties and applies mathematical analysis to reach his conclusions. The discipline of
engineering geology (or geological engineering) has attempted to fill this philosophical gap, primarily in connection with the characterization of the geologic environment for construction works and the evaluation of geologic phenomena such as slope movements, earthquakes, etc., rather than in relation to the design and construction of engineering works such as foundations and retaining structures.
This book was conceived as a vehicle to create a merger between geology and civil engineering; it is a comprehensive guide to the elements of geotechnical engineering from the viewpoint of investigating and defining the geologic environment for the purpose of providing criteria for the design of engineering works—whether they are in soil or rock. The geotechnical engineer must be familiar with the many components of the geologic environment and its characteristics: rock types and rock masses, soil types and soil formations, groundwater as well as the phenomena generally referred to as geologichazards, i.e., flooding and erosion, landslides, ground heave, subsidence and collapse, and earthquakes.
While conducting geotechnical investigations it is necessary to identify these elements and to define their spatial orientation by employing various techniques of exploration.
Engineering design criteria are established based on measurements of the hydraulic andmechanical properties of the component geologic materials, either through laboratory testsof samples retrieved from the field, or by tests in the field itself, i.e., in situ. The response of the geologic environment to changing stress fields or other transient conditions, occurring naturally or as a result of construction activity, is measured with instrumentation.
The emphasis in this text is on the identification and description of the elements of the geologic environment, the data required for the analysis and design of engineering works, the physical and engineering properties of geologic materials, and procurement of the relevant data. Approaches to solutions of engineering problems are described for some conditions as an aid to understanding the necessity for the data and their application; general solutions are described for those problems that can be resolved based on experience and judgment, without resorting to rigorous mathematical analysis. The analytical aspects of soil and rock mechanics as applied to the design of foundations, retaining structures,dams, pavements, tunnels, and other engineering works are not included in this text, except on occasion as a brief reference to some particular aspect of analysis such as settlements, slope stability, or seepage forces.
The most serious elements of the geologic environment that impact on the work by humankind are the geologic hazards, and approaches for dealing with these hazards are described in some detail. These phenomena are considered in terms of the degree of hazard that they pose and the degree of the risk of their occurrence. Solutions to these problems can follow one of several approaches: avoid the hazard, reduce it, or eliminate it. It must be recognized that in many instances it is not possible to totally eliminate a hazardous condition and it must either be avoided or reduced to the point where the risk istolerable.
GEOTECHNICAL ENGINEERINGINVESTIGATION HANDBOOK PDF
کاربر عزیز دانلود از این سایت رایگان نیست شما موظفید برای دانلود هر مطلب مبلغ ۵۰۰۰ ریال به حساب مدیر وبلاگ واریز کنید. برای اطلاعات بیشتر به قسمت پروفایل بروید.